OPI1266

Electronics

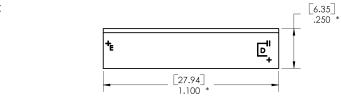
Features:

- TTL compatible output
- 16 kV dc isolation
- 500 kbits/s transfer rate
- t_{PHL} - $t_{PLH} \le 500 \text{ ns}$
- Creepage path: 0.970" (24.64 mm)
- Air path: 0.970" (24.64 mm)
- UL recognized file No. E58730*

Description:

The **OPI1266** is a high voltage isolator that consists of a GaAlAs LED with a peak wavelength of 890 nm, which is coupled with a unique integrated circuit detector. Photons are collected in the detector by a photodiode and amplified by a highgain linear amplifier that drives a Schottky clamped open collector output transistor. The circuit is temperature, current and voltage compensated. Propagation delay times are matched within 500 nanoseconds over the entire temperature range for timing purposes ($\Delta T_P = t_{PHL} - t_{PLH}$). *UL recognition is for 15kV dc. This design produces maximum DC and AC current isolation between the input and output, while providing TTL/LSTTL circuit compatibility.

Applications:

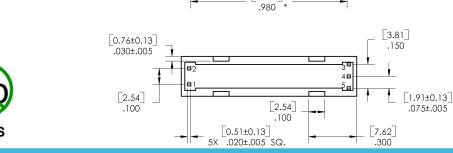

- Data transmission for High voltage isolation
- PCBoard power system isolation
- Industrial equipment power isolation
- Medical equipment power isolation
- Office equipment

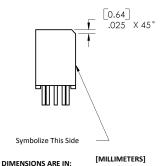
Ordering Information							
Part Number	LED Peak Wavelength	Sensor Photologic®	Isolation Voltage (,000)	t _{PLH} / t _{PHL} Max (ns)	I _F (mA) Typ / Max	V _{CE} (V) Max	Lead Length / Spacing
OPI1266	890 nm	Open Collector	16	500 / 500	13.5 / 50	7.0	0.12" / 0.98"

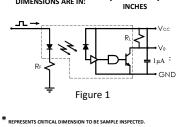
2.80

.110

MIN




[0.51±0.10]


.020±.004

[24.89⁻

Pin#	Function			
1	Anode			
2	Cathode			
3	Vcc			
4	Output			
5	Ground			

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

[8.89] .350

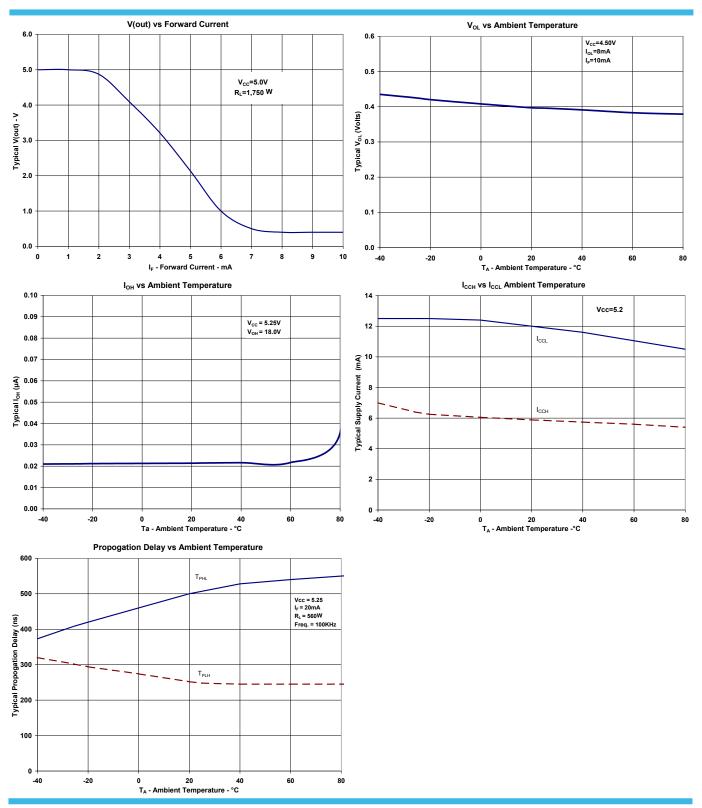
[1.02±0.13]

.040±.005

OPI1266

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage Temperature	-40° C to +85° C
Operating Temperature	-40° C to +70° C
Input-to-Output Isolation Voltage	16 kVDC
Lead Soldering Temperature (1/16" (1.6 mm) from case for 5 seconds with soldering iron) ⁽³⁾	260° C
Input Diode	
Continuous Forward Current	50 mA
Peak Forward Current (1 μs pulse width, 300 pps)	3.0 A
Reverse Voltage	2.0 V
Power Dissipation ⁽¹⁾	100 mW
Output IC	
Maximum Supply Voltage	7 V
Power Dissipation ⁽¹⁾	100 mW


Electrical Characteristics (T _A = 0° C to 70° C unless otherwise noted)							
SYMBOL	PARAMETER		TYP	МАХ	UNITS	TEST CONDITIONS	
Input Diode	e (See OP240 for additional information—for r	eference	e only.)				
V_{F}	Forward Voltage	-	1.2	1.8	V	I _F = 20 mA	
I _R	Reverse Current		-	100	μΑ	V _R = 2.0 V	
Output IC (V_{CC} = 4.75 V to 5.25 V) (See OPL550 for addition	nal infor	mation-	for refe	erence on	ly.)	
I _{OH}	High Level Output Current	-	-	100	μΑ	I _F = 0.0 mA, V _{OH} = 5.25 V	
V _{OL}	Low Level Output Voltage	-	-	0.60	V	I _F = 13.5 mA, I _{OL} = 2.6 mA	
I _{CCH}	High Level Supply Current	2.5	-	15	mA	I _F = 0, Vcc = 5.25V	
I _{CCL}	Low Level Supply Current	-	-	18		I _F = 13.5 mA, I _{OL} = 2.6 mA, Vcc = 5.25 V	
Coupled Ch	aracteristics (V _{CC} = 5 V)						
C _{IO}	Coupling Capacitance	-	-	2	pF	Input and output leads shorted.	
t _{PLH}	Propagation Delay to Low Output Level	-	-	800		Can Firmund	
t _{PHL}	Propagation Delay to High Output Level	-	-	800	ns	See Figure 1	
ΔT_P	Difference in Propagation Delays	-500	-	500	ns	See Figure 1	
I _{ISO}	Isolation Leakage Current ⁽⁴⁾	-	-	20	μΑ	V _{ISO} = 19.2kV dc (input and output leads shorted)	

Notes:

- (1) Derate linearly 1.33 W/°C above 25°C.
- (2) UL recognition is for 15kV dc for one minute.
- (3) Derate linearly 1.33 mW/°C above 25°C.
- (4) Measured with input and output leads shorted.

OPI1266

Issue	Change Description	Approval	Date
	Initial Release of OPI1266 (July 1996).		July 1996
Α	OPI1268 (from PDF Catalog)		07/04
A.1	OPI1266 new format including graphs	Trevor Schelp	11/19/07
В	Change from .01µF to 1µA on Figure 1 on page 1.	Trevor Schelp	3/30/11
С	Removed reference to UL File No E58730		12/2014
C.1	Reinstatement of reference to UL File No E58730	Cosmin Suciu	4/9/15