

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

September 2016

FPF1504 / FPF1504L Advanced Load Management Switch

Features

- 1.0 V to 3.6 V Input Voltage Operating Range
- Typical R_{DS(ON)}:
 - 15 m Ω at V $_{\text{IN}}$ =3.3 V
 - 20 m Ω at V_{IN}=1.8 V
 - 40 m Ω at V_{IN}=1.0 V
- Slew Rate Control
- Output Discharge Function
- Low <1 µA Quiescent Current at V_{ON}=V_{IN}
- ESD Protected: 4000 V HBM, 2000 V CDM
- GPIO/CMOS-Compatible Enable Circuitry
- Active HIGH and active LOW versions

Applications

- Mobile Devices and Smart Phones
- Portable Media Devices
- Digital Cameras
- Advanced Notebook, UMPC, and MID
- Portable Medical Devices
- GPS and Navigation Equipment

Description

The FPF1504/FPF1504L are low-R_{DS} P-channel MOSFET load switches of the IntelliMAX[™] family. Integrated slew-rate control prevents excessive inrush current from the supply rails with capacitive loads common in power applications. In addition, the FPF1504/FPF1504L feature output discharge capability.

The input voltage range operates from 1.0 V to 3.6 V to fulfill today's mobile device supply requirements. Switch control is by a logic input (ON pin) capable of interfacing directly with low-voltage CMOS control signals and GPIOs in embedded processors.

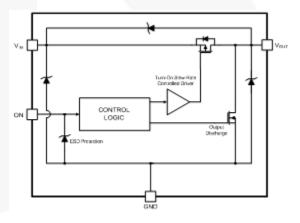
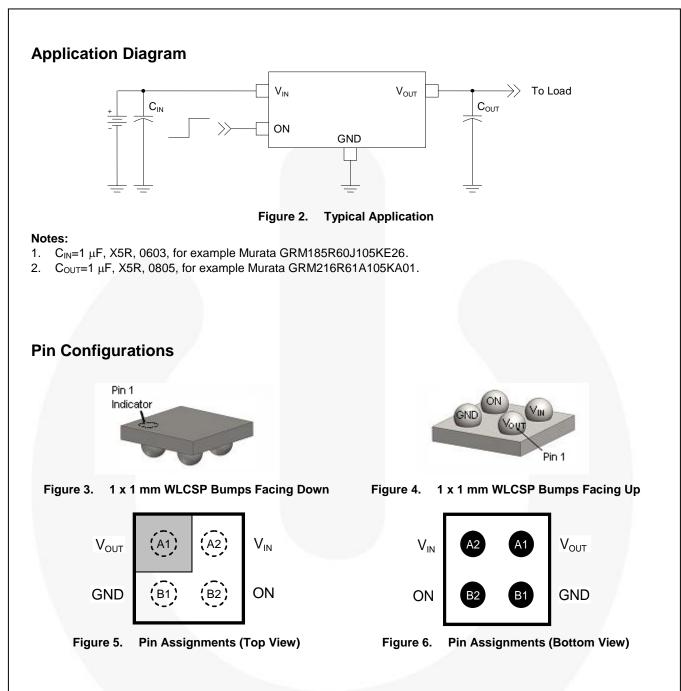



Figure 1. Block Diagram

Part Number	Top Mark	Switch (Typical) At 1.8 V _{IN}	Input Buffer	Output Discharge	ON Pin Activity	Package			
FPF1504UCX	G4	20 mΩ	CMOS	YES	Active HIGH	4-Ball, WLCSP, 0.5 mm Pitch			
FPF1504BUCX	G4	20 mΩ	CMOS	YES	Active HIGH	4-Ball, WLCSP with Backside Laminate, 0.5 mm Pitch			
FPF1504LUCX	GZ	20 mΩ	CMOS	YES	Active LOW	4-Ball, WLCSP, 0.5 mm Pitch			
FPF1504LBUCX	GZ	20 mΩ	CMOS	YES	Active LOW	4-Ball, WLCSP with Backside Laminate, 0.5 mm Pitch			

Ordering Information

Pin Definitions

Pin #	Name	Description
A1	V _{OUT}	Switch Output
A2	V _{IN}	Supply Input; Input to the Power Switch
B1	GND	Ground
B2	ON	ON/OFF Control

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Paramete	Min.	Max.	Unit		
V _{IN}	V _{IN} , V _{OUT} , V _{ON} to GND		-0.3	4.0	V	
I _{SW}	Maximum Continuous Switch Current			1.5	А	
PD	Power Dissipation at T _A =25°C			1.0	W	
T _{STG}	Storage Junction Temperature	-65	+150	°C		
T _A	Operating Temperature Range		-40	+85	°C	
	Thermal Pasistance, Junction to Ambient	1S2P with 1 Thermal Via		95	°C/W	
Θ_{JA}	Thermal Resistance, Junction-to-Ambient	1S2P without Thermal Via		187	0/11	
500	Electrostotic Discharge Canability	Human Body Model, JESD22-A114	4		- kV	
ESD	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	2			

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

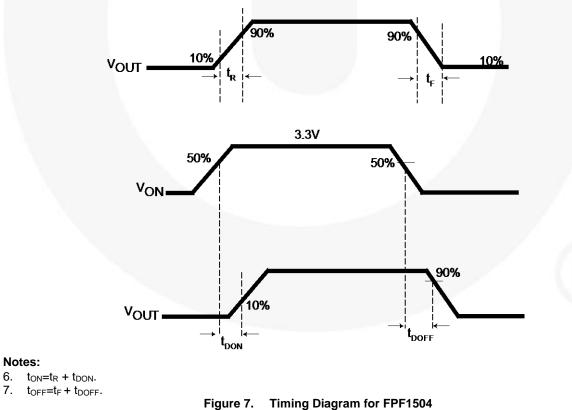
Symbol	Parameter	Min.	Max.	Unit
V _{IN}	Supply Voltage	1.0	3.6	V
TA	Ambient Operating Temperature	-40	+85	°C

Symbol	Param	eter	Conditions	Min.	Тур.	Max.	Units	
Basic O	peration					1 1		
V _{IN}	Supply Voltage			1.0		3.6	V	
$I_{Q(OFF)}$	Off Supply	FPF1504	V _{ON} =GND, V _{OUT} =Open		0.25			
	Current	FPF1504L	V _{ON} = V _{IN} , V _{OUT} =Open		0.3		μA	
	Off Switch	FPF1504	V _{ON} =GND, V _{OUT} =GND		0.25			
SD(OFF)	Current	FPF1504L	V _{ON} = V _{IN} , V _{OUT} =GND		0.3			
			I _{OUT} =0 mA, V _{IN} =3.6 V, V _{ON} =V _{IN}		0.08			
	Quiescent	FPF1504	I _{OUT} =0 mA, V _{ON} =V _{IH(MIN)}		0.75			
Ι _Q	Current		I _{OUT} =0 mA, V _{IN} =3.6 V, V _{ON} =GND	1	0.08			
	1	FPF1504L	I _{OUT} =0 mA, V _{ON} =V _{IL(MAX)}		0.95			
			V _{IN} =3.3 V, I _{OUT} =200 mA, T _A =25°C	2	15	30		
			V _{IN} =1.8 V, I _{OUT} =200 mA, T _A =25°C		20	40	mΩ	
Ron	On Resistance		V _{IN} =1.5 V, I _{OUT} =200 mA, T _A =25°C		30			
			V _{IN} =1.0 V, I _{OUT} =200 mA, T _A =25°C		40	80		
			V_{IN} =1.8 V, I_{OUT} =200 mA, T_A =85°C ⁽³⁾		35	50		
R _{PD}	Output Discharge Resistance	e Pull-Down	V _{ON} =0 V or V _{IN} , I _{OUT} =-20 mA		65	95	Ω	
VIH	On Input Logic High Voltage	FPF1504		0.8			- v	
VIL	On Input Logic Low Voltage	FPF1504				0.3		
I _{ON}	On Input Leakage	e	V _{ON} =V _{IN} or GND			1	μA	
Dynamic	Characteristics		· · · ·	1				
t _{DON}	Turn-On Delay ⁽⁴⁾	FPF1504			80			
t _R	V_{OUT} Rise Time ⁽⁴⁾	FPF1504	R _L =10 Ω, C _L =0.1 μF, V _{IN} =3.3 V, $T_A=25$ °C		130		μs	
t _{ON}	Turn-On Time ⁽⁴⁾	FPF1504			210	1		
	Turn-On	FPF1504			70	100		
t _{DON}	Delay ⁽⁴⁾	FPF1504L			95			
1	Vout Rise	FPF1504	R _L =500 Ω, C _L =0.1 μF, V _{IN} =3.3 V,		110	150		
t _R	Time ⁽⁴⁾	FPF1504L	T _A =25°C		115		μs	
	Turn-On Time ⁽⁴⁾	FPF1504			180	250		
t _{ON}	Tum-On Time'	FPF1504L			210			

Electrical Characteristics (Continued)

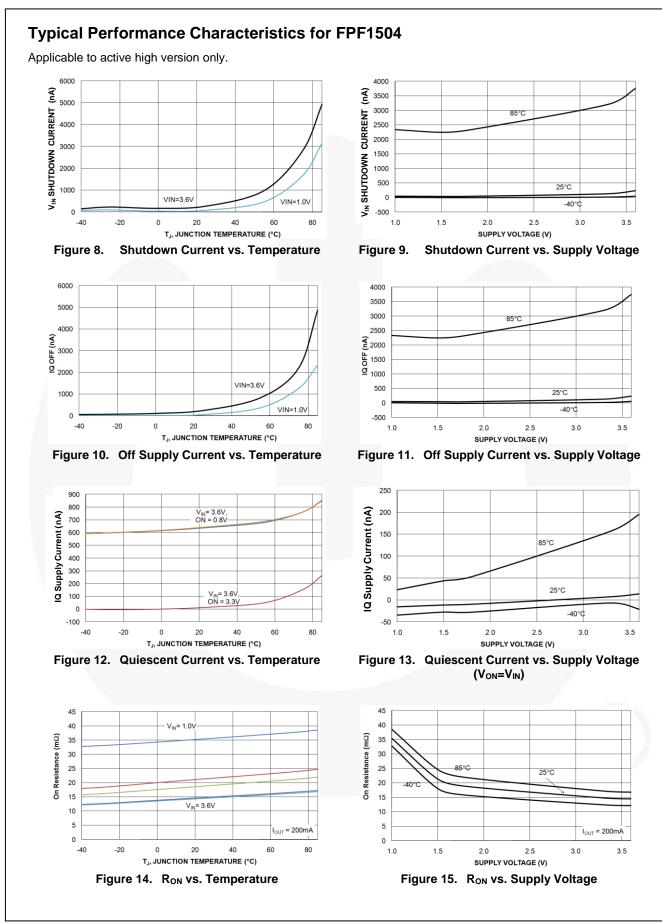
Unless otherwise noted, V_{IN}=1.0 to 3.6 V, T_A=-40 to +85°C; typical values are at V_{IN}=3.3 V and T_A=25°C.

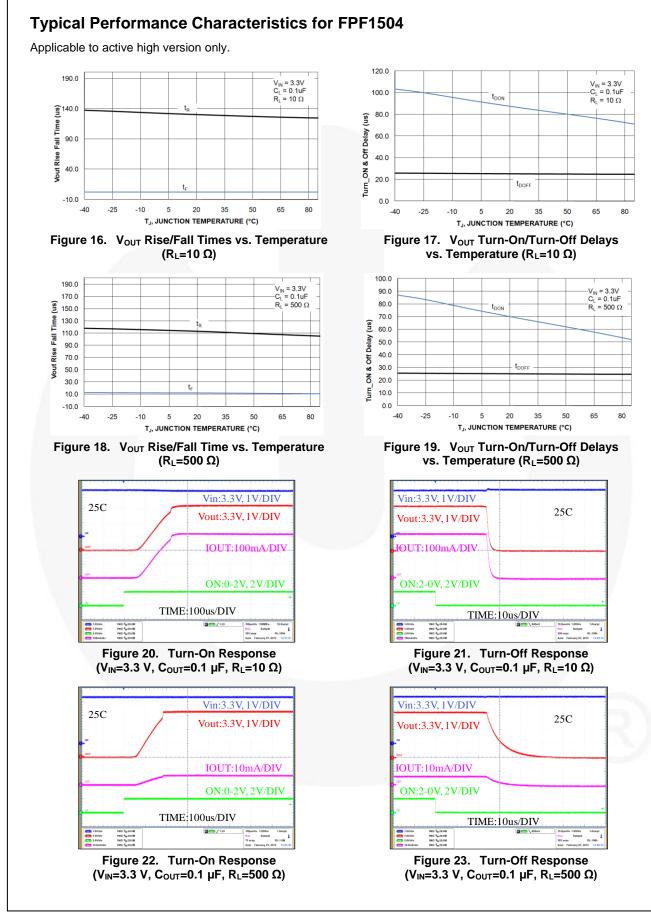
Symbol	Parameter		Conditions	Min.	Тур.	Max.	Units
Dynamic Characteristics (Continued)							
t _{DOFF}	Turn-Off Delay ⁽⁴⁾	FPF1504			25	30	
t _F	V _{OUT} Fall Time ⁽⁴⁾	FPF1504	$\begin{array}{l} {\sf R}_{\sf L}{=}10\;\Omega,{\sf C}_{\sf L}{=}0.1\;\mu{\sf F},{\sf V}_{\sf IN}{=}3.3\;{\sf V},\\ {\sf T}_{\sf A}{=}25^{\circ}{\sf C} \end{array}$		2		μs
t _{OFF}	Turn-Off Time ⁽⁴⁾	FPF1504			27		
	Turn-Off	FPF1504			25		
t _{DOFF}	Delay ⁽⁴⁾	FPF1504L			2		
t _F V _{OUT} Fall Time ⁽⁴⁾	(4) FPF1504	R _L =500 Ω, C _L =0.1 μF, V _{IN} =3.3 V,	6	12			
	VOUT Fall TIME'	FPF1504L	T _A =25°C		14		μs
t _{OFF} Turn-Off		FPF1504			37		
	Turn-Off Time'	FPF1504L	1		16		


Notes:

3. This parameter is guaranteed by design and characterization; not production tested.

 $t_{DON}/t_{DOFF}/t_R/t_F$ are defined in Figure 7. 4.


5. Output discharge path is enabled during off.


Timing Diagram – FPF1504

6.

7.

Application Information

Input Capacitor

IntelliMAXTM switches don't require an input capacitor. To reduce device inrush current, a 0.1 μ F ceramic capacitor, C_{IN}, is recommended close to the VIN pin. A higher value of C_{IN} can be used to further reduce the voltage drop experienced as the switch is turned on into a large capacitive load.

Output Capacitor

IntelliMAXTM switches work without an output capacitor. If the applications parasitic board inductance forces V_{OUT} below GND when switching off, a 0.1 µF capacitor, C_{OUT} , should be placed between V_{OUT} and GND.

Fall Time

Device output fall time can be calculated based on RC constant of external components as follows:

$$t_{\rm F} = R_{\rm L} \times C_{\rm L} \times 2.2 \tag{1}$$

where t_F is 90% to 10% fall time, R_L is output, load and C_L is output capacitor.

Recommended Land Pattern and Layout

For best thermal performance and minimal inductance and parasitic effects, it is recommended to keep input and output traces short and the capacitors as close to The same equation works for a device with a pull-down output resistor, then R_L is replaced by a parallel connected pull-down and external output resistor combination, as follows:

$$t_{\rm F} = \frac{R_{\rm L} \times R_{\rm PD}}{R_{\rm L} + R_{\rm PD}} \times C_{\rm L} \times 2.2 \tag{2}$$

where t_F is 90% to 10% fall time, R_L is output load, R_{PD} is output pull-down resistor (65 Ω typical), and C_L is the output capacitor.

the device as possible. Below is a recommended layout for this device to achieve optimum performance.

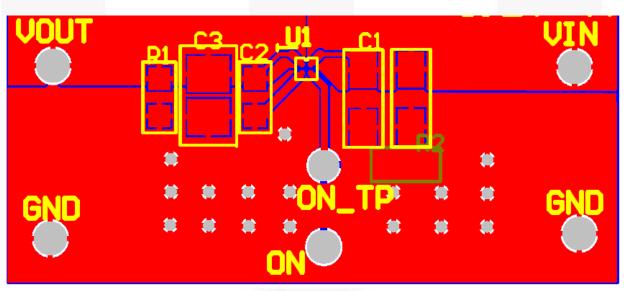
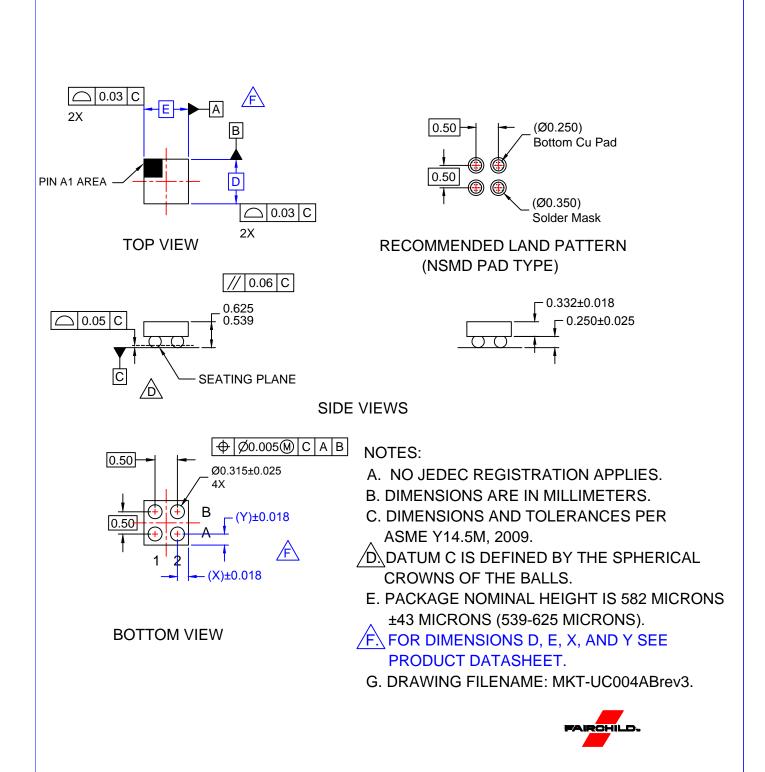



Figure 24. Recommended Land Pattern and Layout

The following information applies to the WLCSP package dimensions on the next page:

Product-Specific Dimensions

Product	D	E	Х	Y
FPF1504UCX				
FPF1504BUCX	060 um 120 um	960 μm ±30 μm	0.230 mm	0.230 mm
FPF1504LUCX	960 μm ±30 μm			
FPF1504LBUCX				

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC