Low-Power, Dual, 12-Bit Voltage-Output DACs with Configurable Outputs

Abstract

General Description The MAX5156/MAX5157 low-power, serial, voltage-output, dual 12-bit digital-to-analog converters (DACs) consume only $500 \mu \mathrm{~A}$ from a single +5 V (MAX5156) or +3 V (MAX5157) supply. These devices feature Rail-toRail ${ }^{\circledR}$ output swing and are available in space-saving 16-pin QSOP and DIP packages. Access to the inverting input allows for specific gain configurations, remote sensing, and high output current capability, making these devices ideally suited for industrial process controls. These devices are also well suited for digitally programmable ($4-20 \mathrm{~mA}$) current loops. The 3 -wire serial interface is SPITM/QSPITM and Microwire ${ }^{\text {TM }}$ compatible. Each DAC has a doublebuffered input organized as an input register followed by a DAC register, which allows the input and DAC registers to be updated independently or simultaneously. Additional features include a programmable shutdown $(2 \mu \mathrm{~A})$, hardware-shutdown lockout, a separate voltage reference for each DAC, power-on reset, and an activelow clear input $(\overline{\mathrm{CL}})$ that resets all registers and DACs to zero. The MAX5156/MAX5157 provide a programmable logic output pin for added functionality, and a serialdata output pin for daisy chaining.

Industrial Process Control
Digital Offset and Gain
Adjustment
Remote Industrial Controls

Applications

Motion Control
Digitally Programmable
4-20mA Current Loops
Automatic Test Equipment

Features

- 12-Bit Dual DAC with Configurable Output Amplifier
- Single-Supply Operation: +5V (MAX5156)
+3V (MAX5157)
- Rail-to-Rail Output Swing
- Low Quiescent Current: $500 \mu \mathrm{~A}$ (normal operation) $2 \mu \mathrm{~A}$ (shutdown mode)
- Power-On Reset Clears DAC Outputs to Zero
- SPI/QSPI and Microwire Compatible
- Space-Saving 16-Pin QSOP Package

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE	INL (LSB)
MAX5156ACPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP	$\pm 1 / 2$
MAX5156BCPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP	± 1
MAX5156ACEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP	$\pm 1 / 2$
MAX5156BCEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP	± 1

Ordering Information continued at end of data sheet.

Pin Configuration appears at end of data sheet.

Functional Diagram

Rail-to-Rail is a registered trademark of Nippon Motorola Ltd. SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corp.

Low-Power, Dual, 12-Bit Voltage-Output DACs with Configurable Outputs

ABSOLUTE MAXIMUM RATINGS

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
Plastic DIP (derate $10.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$	593 mW
QSOP (derate $8.30 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	667 mW
CERDIP (derate $10.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	800 mW
Operating Temperature Ranges	
MAX5152_C_E/MAX5153_C_E $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
MAX5152_E_E/MAX5153_E_E....................... $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
MAX5152_MJE/MAX5153_MJE...................-55 ${ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$	
Lead Temperature (soldering, 10sec)	$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX5156

$\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%, V_{R E F A}=V_{R E F B}=2.5 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, output buffer connected in unity-gain configuration (Figure 9).)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
STATIC PERFORMANCE							
Resolution	N			12			Bits
Integral Nonlinearity	INL	(Note 1)	MAX5156A			$\pm 1 / 2$	LSB
			MAX5156B			± 1	
Differential Nonlinearity	DNL	Guaranteed monotonic				± 1	LSB
Offset Error	Vos	Code = 10				± 6	mV
Offset Tempco	TCVos	Normalized to 2.5 V		3			$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Gain Error					-0.5	± 3	LSB
Gain-Error Tempco		Normalized to 2.5 V			3		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
VDD Power-Supply Rejection Ratio	PSRR	$4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			20	200	$\mu \mathrm{V} / \mathrm{V}$
REFERENCE INPUT							
Reference Input Range	REF			0		D-1.4	V
Reference Input Resistance	RREF	Minimum with code 1554 hex		14	20		k Ω
MULTIPLYING-MODE PERFORMANCE							
Reference 3dB Bandwidth		Input code = 1FFE hex, $\mathrm{V}_{\text {REF }}=0.67 \mathrm{Vp}-\mathrm{p}$ at 2.5 V DC			600		kHz
Reference Feedthrough		$\begin{aligned} & \text { Input code }=0000 \text { hex, } \\ & V_{\text {REF }}=\left(V_{D D}-1.4 \mathrm{Vp}-\mathrm{p}\right) \text { at } 1 \mathrm{kHz} \end{aligned}$			-85		dB
Signal-to-Noise plus Distortion Ratio	SINAD	$\begin{aligned} & \text { Input code }=1 \text { FFE hex, } \\ & V_{R E F}=1 \mathrm{Vp}-\mathrm{p} \text { at } 2.5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}=25 \mathrm{kHz} \end{aligned}$			82		dB
DIGITAL INPUTS							
Input High Voltage	VIH	$\overline{\mathrm{CL}}, \overline{\text { PDL, }} \overline{\mathrm{CS}}, \mathrm{DIN}, \mathrm{SCLK}$		3			V
Input Low Voltage	VIL	$\overline{\mathrm{CL}}, \overline{\mathrm{PDL}}, \overline{\mathrm{CS}}$, DIN, SCLK				0.8	V
Input Hysteresis	VHYS				200		mV
Input Leakage Current	IIN	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{DD}			0.001	± 1	$\mu \mathrm{A}$
Input Capacitance	CIN				8		pF

Low-Power, Dual, 12-Bit Voltage-Output DACs with Configurable Outputs

ELECTRICAL CHARACTERISTICS—MAX5156 (continued)

$\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%, V_{\text {REFA }}=V_{R E F B}=2.5 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, output buffer connected in unity-gain configuration (Figure 9).)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
DIGITAL OUTPUTS (DOUT, UPO)					
Output High Voltage	VOH	ISOURCE $=2 \mathrm{~mA}$	VDD - 0.5		V
Output Low Voltage	VoL	ISINK $=2 \mathrm{~mA}$	0.13	0.40	V
DYNAMIC PERFORMANCE					
Voltage Output Slew Rate	SR		0.75		V/ $/ \mathrm{s}$
Output Settling Time		To 1/2LSB of full-scale, VSTEP $=2.5 \mathrm{~V}$	15		$\mu \mathrm{s}$
Output Voltage Swing		Rail-to-rail (Note 2)	0 to VDD		V
Current into FBA or FBB	IFB		0	± 0.1	$\mu \mathrm{A}$
Time Required to Exit Shutdown			25		$\mu \mathrm{s}$
Digital Feedthrough		$\overline{C S}=$ VDD, $\mathrm{fDIN}=100 \mathrm{kHz}$, VSCLK $=5 \mathrm{Vp}-\mathrm{p}$	5		nV -s
Digital Crosstalk			5		nV -s
POWER SUPPLIES					
Positive Supply Voltage	VDD		4.5	5.5	V
Power-Supply Current	IDD	(Note 3)	0.5	0.65	mA
Power-Supply Current in Shutdown	IDD(SHDN)	(Note 3)	2	10	$\mu \mathrm{A}$
Reference Current in Shutdown			0	± 1	$\mu \mathrm{A}$
TIMING CHARACTERISTICS					
SCLK Clock Period	tcP	(Note 4)	100		ns
SCLK Pulse Width High	tch		40		ns
SCLK Pulse Width Low	tCL		40		ns
$\overline{\mathrm{CS}}$ Fall to SCLK Rise Setup Time	tcss		40		ns
SCLK Rise to $\overline{\mathrm{CS}}$ Rise Hold Time	tchs		0		ns
DIN Setup Time	tDS		40		ns
DIN Hold Time	tDH		0		ns
SCLK Rise to DOUT Valid Propagation Delay	tDO1	CLOAD $=200 \mathrm{pF}$		80	ns
SCLK Fall to DOUT Valid Propagation Delay	tDO2	CLOAD $=200 \mathrm{pF}$		80	ns
SCLK Rise to $\overline{\mathrm{CS}}$ Fall Delay	tcso		10		ns
$\overline{\text { CS Rise to SCLK Rise Hold }}$	tcs1		40		ns
$\overline{\mathrm{CS}}$ Pulse Width High	tcsw		100		ns

Note 1: Accuracy is specified from code 10 to code 4095.
Note 2: Accuracy is better than 1LSB for Vout greater than 6 mV and less than VDD -50 mV . Guaranteed by PSRR test at the end points.
Note 3: Digital inputs are set to either $V_{D D}$ or DGND, code $=0000$ hex, $R_{L}=\infty$.
Note 4: SCLK minimum clock period includes rise and fall times.

Low-Power, Dual, 12-Bit Voltage-Output DACs with Configurable Outputs

ELECTRICAL CHARACTERISTICS—MAX5157

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{REFA}}=\mathrm{V}_{\mathrm{REFB}}=1.25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, output buffer connected in unity-gain configuration (Figure 9).)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
STATIC PERFORMANCE						
Resolution	N			12		Bits
Integral Nonlinearity	INL	(Note 5)	MAX5157A		± 1	LSB
			MAX5157B		± 2	
Differential Nonlinearity	DNL	Guaranteed monotonic			± 1	LSB
Offset Error	Vos	Code = 20			± 6	mV
Offset Tempco	TCVOS	Normalized to 1.25 V		6		ppm $/{ }^{\circ} \mathrm{C}$
Gain Error				-0.5	± 4	LSB
Gain-Error Tempco		Normalized to 1.25 V		6		ppm $/{ }^{\circ} \mathrm{C}$
VDD Power-Supply Rejection Ratio	PSRR	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$		20	320	$\mu \mathrm{V} / \mathrm{V}$
REFERENCE INPUT (VREF)						
Reference Input Range	REF			0	VDD - 1.4	V
Reference Input Resistance	RREF	Minimum with code 1554 hex		1420		k ת
MULTIPLYING-MODE PERFORMANCE						
Reference 3dB Bandwidth		$\begin{aligned} & \text { Input code }=1 \text { FFE hex, } \\ & V_{\text {REF }(A C)}=0.67 \mathrm{Vp}-\mathrm{p} \text { at } 1.25 \mathrm{~V} \mathrm{DC} \end{aligned}$		600		kHz
Reference Feedthrough		$\begin{aligned} & \text { Input code }=0000 \text { hex, } \\ & \text { VREF }=(\mathrm{VDD}-1.4 \mathrm{~V}) \text { at } 1 \mathrm{kHz} \end{aligned}$		-92		dB
Signal-to-Noise plus Distortion Ratio	SINAD	$\begin{aligned} & \text { Input code }=1 \text { FFE hex, } \\ & \mathrm{V}_{\text {REF }}=1 \mathrm{Vp}-\mathrm{p} \text { at } 1.25 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}=15 \mathrm{kHz} \end{aligned}$		73		dB
DIGITAL INPUTS						
Input High Voltage	V_{IH}	$\overline{\mathrm{CL}}, \overline{\mathrm{PDL}}, \overline{\mathrm{CS}}, \mathrm{DIN}, \mathrm{SCLK}$		2.2		V
Input Low Voltage	VIL	$\overline{\mathrm{CL}}, \overline{\mathrm{PDL}}, \overline{\mathrm{CS}}, \mathrm{DIN}, \mathrm{SCLK}$			0.8	V
Input Hysteresis	VHYS			200		mV
Input Leakage Current	IIN	V IN $=0 \mathrm{~V}$ to V_{DD}		0	± 0.1	$\mu \mathrm{A}$
Input Capacitance	Cin			8		pF
DIGITAL OUTPUTS (DOUT, UPO)						
Output High Voltage	VOH	ISOURCE $=2 \mathrm{~mA}$		VDD - 0.5		V
Output Low Voltage	VOL	ISINK = 2mA		0.13	0.4	V
DYNAMIC PERFORMANCE						
Voltage Output Slew Rate	SR			0.75		V/ $/ \mathrm{s}$
Output Settling Time		To 1/2LSB of full-scale, VSTEP $=1.25 \mathrm{~V}$		18		$\mu \mathrm{s}$
Output Voltage Swing		Rail-to-rail (Note 6)		0 to V_{DD}		V
Current into FBA or FBB	IfB			0	± 0.1	$\mu \mathrm{A}$
Time Required to Exit Shutdown				25		$\mu \mathrm{s}$
Digital Feedthrough		$\overline{C S}=V_{D D}$	kHz, VscLK $=3 \mathrm{Vp}-\mathrm{p}$	5		nV -s
Digital Crosstalk				5		nV -s

Low-Power, Dual, 12-Bit Voltage-Output DACs with Configurable Outputs

ELECTRICAL CHARACTERISTICS—MAX5157 (continued)

$\left(V_{D D}=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\text {REFA }}=\mathrm{V}_{\mathrm{REFB}}=1.25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, output buffer connected in unity-gain configuration (Figure 9).)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
Positive Supply Voltage	VDD		2.7		3.6	V
Power-Supply Current	IDD	(Note 7)		0.5	0.6	mA
Power-Supply Current in Shutdown	IDD(SHDN)	(Note 7)		1	8	$\mu \mathrm{A}$
Reference Current in Shutdown					± 1	$\mu \mathrm{A}$
TIMING CHARACTERISTICS						
SCLK Clock Period	tcP	(Note 4)	100			ns
SCLK Pulse Width High	tch		40			ns
SCLK Pulse Width Low	tcL		40			ns
$\overline{\mathrm{CS}}$ Fall to SCLK Rise Setup Time	tcss		40			ns
SCLK Rise to $\overline{\mathrm{CS}}$ Rise Hold Time	tCHS		0			ns
DIN Setup Time	tDS		50			ns
DIN Hold Time	tDH		0			ns
SCLK Rise to DOUT Valid Propagation Delay	tDO1	CLOAD $=200 \mathrm{pF}$			120	ns
SCLK Fall to DOUT Valid Propagation Delay	tDO2	CLOAd $=200 \mathrm{pF}$			120	ns
SCLK Rise to $\overline{\mathrm{CS}}$ Fall Delay	tcso		10			ns
$\overline{\text { CS Rise to SCLK Rise Hold }}$	tCS1		40			ns
$\overline{\overline{C S}}$ Pulse Width High	tcsw		100			ns

Note 5: Accuracy is specified from code 20 to code 4095.
Note 6: Accuracy is better than 1LSB for Vout greater than 6 mV and less than VDD -100 mV . Guaranteed by PSRR test at the end points.
Note 7: Digital inputs are set to either VDD or DGND, code $=0000$ hex, $R L=\infty$.

Low-Power, Dual, 12-Bit Voltage-Output DACs with Configurable Outputs

MAX5156/MAX5157

Typical Operating Characteristics
$\left(V_{D D}=+5 \mathrm{~V}, \mathrm{RL}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{FB}_{-}\right.$connected to $\mathrm{OUT}_{-}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)
MAX5156

FULL-SCALE ERROR vs. RESISTIVE LOAD

REFERENCE FEEDTHROUGH AT 1 kHz

DYNAMIC-RESPONSE RISE TIME

vs. TEMPERATURE

DYNAMIC-RESPONSE FALL TIME

Low-Power, Dual, 12-Bit Voltage-Output DACs with Configurable Outputs

Typical Operating Characteristics (continued)
($V_{D D}=+3 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, C L=100 \mathrm{pF}, \mathrm{FB}_{\mathrm{L}}$ connected to $O U T_{,}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Low-Power, Dual, 12-Bit Voltage-Output DACs with Configurable Outputs

Typical Operating Characteristics (continued)
$\left(V_{D D}=+5 \mathrm{~V}\left(\mathrm{MAX5}^{2} 56\right), \mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V}(\mathrm{MAX5157}), \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{FB}_{-}\right.$connected to $\mathrm{OUT}_{-}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

MAX5156/MAX5157

MAX5156
SUPPLY CURRENT
vs. SUPPLY VOLTAGE

MAX5157
SUPPLY CURRENT vs. SUPPLY VOLTAGE

MAX5156
MAJOR-CARRY TRANSITION

MAX5156 ANALOG CROSSTALK

$200 \mu \mathrm{~s} / \mathrm{div}$

M AX5156
DIGITAL FEEDTHROUGH

Low-Power, Dual, 12-Bit Voltage-Output DACs with Configurable Outputs

Pin Description

PIN	NAME	
1	AGND	Analog Ground
2	OUTA	DAC A Output Voltage
3	FBA	DAC A Output Amplifier Feedback Input. Inverting input of the output amplifier.
4	REFA	Reference for DAC A
5	$\overline{\mathrm{CL}}$	Active-Low Clear Input. Resets all registers to zero. DAC outputs go to 0V.
6	$\overline{\mathrm{CS}}$	Chip-Select Input
7	DIN	Serial Data Input
8	SCLK	Serial Clock Input
9	DGND	Digital Ground
10	DOUT	Serial Data Output
11	UPO	User-Programmable Output
12	$\overline{\text { PDL }}$	Power-Down Lockout. The device cannot be powered down when $\overline{\text { PDL }}$ is low.
13	REFB	Reference Input for DAC B
14	FBB	DAC B Output Amplifier Feedback Input. Inverting input of the output amplifier.
15	OUTB	DAC B Output Voltage
16	VDD	Positive Power Supply

Detailed Description

The MAX5156/MAX5157 dual, 12-bit, voltage-output DACs are easily configured with a 3-wire serial interface. These devices include a 16-bit data-in/data-out shift register, and each DAC has a double-buffered input comprised of an input register and a DAC register (see Functional Diagram). Both DACs use an inverted R-2R ladder network that produces a weighted voltage proportional to the input voltage value. Each DAC has its own reference input to facilitate independent fullscale values. Figure 1 depicts a simplified circuit diagram of one of the two DACs.

Reference Inputs

The reference inputs accept both AC and DC values with a voltage range extending from 0 V to (VDD-1.4V). Determine the output voltage using the following equation:

$$
\text { VOUT }=\text { VREF } \times \text { NB / } 4096
$$

where NB is the numeric value of the DAC's binary input code (0 to 4095) and VREF is the reference voltage.
The reference input impedance ranges from $14 \mathrm{k} \Omega$ (1554 hex) to several giga ohms (with an input code of 0000 hex). This reference input capacitance is code dependent and typically ranges from 15 pF with an input code of all zeros to 50 pF with a full-scale input code.

Figure 1. Simplified DAC Circuit Diagram

Output Amplifier

The output amplifier's inverting input is available to the user, allowing force and sense capability for remote sensing and specific gain configurations. The inverting input can be connected to the output to provide a unitygain buffered output. The output amplifiers have a typical slew rate of $0.75 \mathrm{~V} / \mu$ s and settle to $1 / 2 \mathrm{LSB}$ within $15 \mu \mathrm{~s}$, with a load of $10 \mathrm{k} \Omega$ in parallel to 100 pF . Loads less than $2 \mathrm{k} \Omega$ degrade performance.

g

 -

Low-Power, Dual, 12-Bit Voltage-Output DACs with Configurable Outputs

Table 1. Serial-Interface Programming Commands

16-BIT SERIAL WORD					FUNCTION
A0	C1	CO	D11................... 0 MSB	S0	
0	0	1	12 bits of DAC data	0	Load input register A; DAC register is unchanged.
1	0	1	12 bits of DAC data	0	Load input register B; DAC register is unchanged.
0	1	0	12 bits of DAC data	0	Load input register A; all DAC registers are updated.
1	1	0	12 bits of DAC data	0	Load input register B; all DAC registers are updated.
0	1	1	12 bits of DAC data	0	Load all DAC registers from the shift register (start up both DACs with new data).
1	0	0	xxxxxxxxxxxx	0	Update both DAC registers from their respective input registers (start up both DACs with data previously stored in the input registers).
1	1	1	xxxxxxxxxxxx	0	Shut down both DACs if $\overline{\text { PDL }}=1$.
0	0	0	$001 \mathrm{x} x \mathrm{xxxxxxx}$	0	Update DAC register A from input register A (start up DAC A with data previously stored in input register A).
0	0	0	$101 \mathrm{x} x \mathrm{xxxxxxx}$	0	Update DAC register B from input register B (start up DAC B with data previously stored in input register B).
0	0	0	$110 \times \mathrm{xxxxxxxx}$	0	Shut down DAC A when $\overline{\mathrm{PDL}}=1$.
0	0	0	111 x xxxxxxxx	0	Shut down DAC B when $\overline{\mathrm{PDL}}=1$.
0	0	0	$010 \mathrm{x} x \mathrm{xxxxxxx}$	0	UPO goes low (default).
0	0	0	$011 \mathrm{x} x \mathrm{xxxxxxx}$	0	UPO goes high.
0	0	0	1001 xxxxxxxx	0	Mode 1, DOUT clocked out on SCLK's rising edge.
0	0	0	1000 xxxxxxxx	0	Mode 0, DOUT clocked out on SCLK's falling edge (default).
0	0	0	000 x xxxxxxxx	0	No operation (NOP).

" x " = don't care
Note: D11, D10, D9, and D8 become control bits when A0, C1, and C0 = $0 . S 0$ is a sub bit, always zero.

Power-Down Mode

The MAX5156/MAX5157 feature a software-programmable shutdown mode that reduces the typical supply current to 2μ A. The two DACs can be shut down independently or simultaneously by using the appropriate programming word. For instance, enter shutdown mode (for both DACs) by writing an input control word of 111XXXXXXXXXXXX0 (Table 1). In shutdown mode, the reference inputs and amplifier outputs become high impedance, and the serial interface remains active. Data in the input registers is saved, allowing the MAX5156/MAX5157 to recall the output state prior to entering shutdown when returning to normal mode. Exit shutdown by recalling the previous condition or by
updating the DAC with new information. When returning to normal operation (exiting shutdown), wait $20 \mu \mathrm{~s}$ for output stabilization.

Serial Interface

The MAX5156/MAX5157 3 -wire serial interface is compatible with both Microwire (Figure 2) and SPI/QSPI (Figure 3) serial-interface standards. The 16 -bit serial input word consists of an address bit, two control bits, 12 bits of data (MSB to LSB), and one sub bit as shown in Figure 4. The address and control bits determine the response of the MAX5156/MAX5157, as outlined in Table 1.

Low-Power, Dual, 12-Bit Voltage-Output DACs with Configurable Outputs

Figure 2. Connections for Microwire

Figure 3. Connections for SPI/QSPI

Figure 4. Serial-Data Format

The MAX5156/MAX5157's digital inputs are double buffered, which allows any of the following: loading the input register(s) without updating the DAC register(s), updating the DAC register(s) from the input register(s), or updating the input and DAC registers concurrently. The address and control bits allow the DACs to act independently.
Send the 16-bit data as one 16-bit word (QSPI) or two 8 -bit packets (SPI, Microwire), with $\overline{\mathrm{CS}}$ low during this period. The address and control bits determine which register will be updated, and the state of the registers when exiting shutdown. The 3-bit address/control determines the following:

- registers to be updated
- clock edge on which data is clocked out via the serial data output (DOUT)
- state of the user-programmable logic output
- configuration of the device after shutdown

The general timing diagram in Figure 5 illustrates how data is acquired. Driving $\overline{\mathrm{CS}}$ low enables the device to receive data. Otherwise, the interface control circuitry is disabled. With $\overline{\mathrm{CS}}$ low, data at DIN is clocked into the register on the rising edge of SCLK. As $\overline{\mathrm{CS}}$ goes high, data is latched into the input and/or DAC registers depending on the address and control bits. The maximum clock frequency guaranteed for proper operation is 10 MHz . Figure 6 depicts a more detailed timing diagram of the serial interface.

Serial Data Output (DOUT)
DOUT is the internal shift register's output. It allows for daisy-chaining and data readback. The MAX5156/ MAX5157 can be programmed to shift data out of DOUT on SCLK's falling edge (Mode 0) or rising edge (Mode 1). Mode 0 provides a lag of 16 clock cycles, which maintains compatibility with SPI/QSPI and Microwire interfaces. In Mode 1, the output data lags 15.5 clock cycles. On power-up, the device defaults to Mode 0.

User-Programmable Logic Output (UPO) UPO allows an external device to be controlled through the MAX5156/MAX5157 serial interface (Table 1), thereby reducing the number of microcontroller I/O pins required. On power-up, UPO is low.

Power-Down Lockout Input ($\overline{P D L}$)
$\overline{\mathrm{PDL}}$ disables software shutdown when low. When in shutdown, transitioning $\overline{\mathrm{PDL}}$ from high to low wakes up the part with the output set to the state prior to shutdown. $\overline{\text { PDL }}$ can also be used to asynchronously wake up the device.

Low-Power, Dual, 12-Bit Voltage-Output DACs with Configurable Outputs

\square

Figure 5. Serial-Interface Timing Diagram

Figure 6. Detailed Serial-Interface Timing Diagram

Figure 7. Daisy Chaining MAX5156/MAX5157s

Daisy Chaining Devices

Any number of MAX5156/MAX5157s can be daisy chained by connecting the DOUT pin of one device to the DIN pin of the following device in the chain (Figure 7).
Since the MAX5156/MAX5157's DOUT has an internal active pull-up, the DOUT sink/source capability determines the time required to discharge/charge a capaci-
tive load. Refer to the digital output V_{OH} and $\mathrm{VOL}_{\mathrm{spec}} \mathrm{i}$ fications in the Electrical Characteristics.
Figure 8 shows an alternative method of connecting several MAX5156/MAX5157s. In this configuration, the data bus is common to all devices; data is not shifted through a daisy-chain. More I/O lines are required in this configuration because a dedicated chip-select input (CS) is required for each IC.

Low-Power, Dual, 12-Bit Voltage-Output DACs with Configurable Outputs

Figure 8. Multiple MAX5156/MAX5157s Sharing a Common DIN Line
Table 2. Unipolar Code Table (Gain = +1)

Figure 9. Unipolar Output Circuit

Applications Information

Unipolar Output

Figure 9 depicts the MAX5156/MAX5157 configured for unity-gain, unipolar operation. Table 2 lists the unipolar output codes. To increase dynamic range, specific gain configurations can be used as shown in Figure 10.

DAC CONTENTS		ANALOG OUTPUT	
MSB	LSB	(111	1111
$1111(0)$	$+V_{\text {REF }}\left(\frac{4095}{4096}\right)$		
1000	0000	$0001(0)$	$+V_{\text {REF }}\left(\frac{2049}{4096}\right)$
1000	0000	$0000(0)$	$+V_{\text {REF }}\left(\frac{2048}{4096}\right)=\frac{V_{\text {REF }}}{2}$
0111	1111	$1111(0)$	$+V_{\text {REF }}\left(\frac{2047}{4096}\right)$
0000	0000	$0001(0)$	$+V_{\text {REF }}\left(\frac{1}{4096}\right)$
0000	0000	$0000(0)$	$0 V$

Note: () are for the sub bit.
Bipolar Output
The MAX5156/MAX5157 can be configured for a bipolar output, as shown in Figure 11. The output voltage is given by the equation:
VOUT = VREF [((2 x NB) / 4096) - 1]
where NB represents the numeric value of the DAC's binary input code. Table 3 shows digital codes and the corresponding output voltage for Figure 11's circuit.

Low-Power, Dual, 12-Bit Voltage-Output DACs with Configurable Outputs

Figure 10. Configurable Output Gain

Table 3. Bipolar Code Table

DAC CONTENTS		LSB	ANALOG OUTPUT
1111	1111	$1111(0)$	$+V_{\text {REF }}\left(\frac{2047}{2048}\right)$
1000	0000	$0001(0)$	$+V_{\text {REF }}\left(\frac{1}{2048}\right)$
1000	0000	$0000(0)$	$0 V$
0111	1111	$1111(0)$	$-V_{\text {REF }}\left(\frac{1}{2048}\right)$
0000	0000	$0001(0)$	$-V_{\text {REF }}\left(\frac{2047}{2048}\right)$
0000	0000	$0000(0)$	$-V_{\text {REF }}\left(\frac{2048}{2098}\right)=-V_{\text {REF }}$

Note: () are for the sub bit.

Using an AC Reference

 In applications where the reference has an AC signal component, the MAX5156/MAX5157 have multiplying capabilities within the reference input voltage range specifications. Figure 12 shows a technique for applying a sinusoidal input REF, where the AC signal is offset before being applied to the reference input.

Figure 11. Bipolar Output Circuit

Figure 12. AC Reference Input Circuit

Harmonic Distortion and Noise
The total harmonic distortion plus noise (THD +N) is typically less than -80 dB at full scale with a $1 \mathrm{Vp}-\mathrm{p}$ input swing at 5 kHz . The typical -3 dB frequency is 600 kHz for both devices, as shown in the Typical Operating Characteristics.

Low-Power, Dual, 12-Bit Voltage-Output DACs with Configurable Outputs

Digital Calibration and Threshold Selection

Figure 13 shows the MAX5156/MAX5157 in a digital calibration application. With a bright value applied to the photodiode (on), the DAC is digitally ramped up until it trips the comparator. The microprocessor stores this high calibration value. Repeat the process with a dim light (off) to obtain the dark current calibration. The microprocessor then programs the DAC to set an output voltage that is the midpoint of the two calibration values. Applications include tachometers, motion sensing, automatic readers, and liquid clarity analysis.

Digital Control of Gain and Offset

The two DACs can be used to control the offset and gain for curve-fitting nonlinear functions, such as transducer linearization or analog compression/expansion applications. The input signal is used as the reference for the gain-adjust DAC, whose output is summed with the output from the offset-adjust DAC. The relative weight of each DAC output is adjusted by R1, R2, R3, and R4 (Figure 14).

Figure 13. Digital Calibration

NA IS THE NUMERIC VALUE OF THE INPUT CODE FOR DACA.
NB IS THE NUMERIC VALUE OF THE INPUT CODE FOR DACB.

Figure 14. Digital Control of Gain and Offset

Low-Power, Dual, 12-Bit Voltage-Output DACs with Configurable Outputs

Digitally Programmable Current Source Figure 15 depicts a digitally programmable, unidirectional current source that can be used in industrial control applications. The output current is:
IOUT = (VREF / R) (NB / 4096)
where NB is the DAC code and R is the sense resistor.
Power-Supply Considerations
On power-up, the input and DAC registers clear (resets to zero code). For rated performance, VREF should be at least 1.4 V below V_{DD}. Bypass the power supply with a $4.7 \mu \mathrm{~F}$ capacitor in parallel with a $0.1 \mu \mathrm{~F}$ capacitor to GND. Minimize lead lengths to reduce lead inductance.

Grounding and Layout Considerations Digital and AC transient signals on AGND can create noise at the output. Connect AGND to the highest quality ground available. Use proper grounding techniques, such as a multilayer board with a low-inductance ground plane. Carefully lay out the traces between channels to reduce AC cross-coupling and crosstalk. Wire-wrapped boards and sockets are not recommended. If noise becomes an issue, shielding may be required.

Pin Configuration

Chip Information

Figure 15. Digitally Programmable Current Source

Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE	INL (LSB)
MAX5156AEPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP	$\pm 1 / 2$
MAX5156BEPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP	± 1
MAX5156AEEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	$\pm 1 / 2$
MAX5156BEEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	± 1
MAX5156BMJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP*	± 1
MAX5157ACPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP	± 1
MAX5157BCPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP	± 2
MAX5157ACEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP	± 1
MAX5157BCEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP	± 2
MAX5157AEPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP	± 1
MAX5157BEPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Plastic DIP	± 2
MAX5157AEEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	± 1
MAX5157BEEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	± 2
MAX5157BMJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 CERDIP*	± 2

*Contact factory for availability.

TRANSISTOR COUNT: 3053
SUBSTRATE CONNECTED TO AGND

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

[^0]Printed USA
MAXINI is a registered trademark of Maxim Integrated Products.

[^0]: © 1997 Maxim Integrated Products

