PIC16(L)F19155/56/75/76/85/86 Family Silicon Errata and Data Sheet Clarification The PIC16(L)F19155/56/75/76/85/86 family devices that you have received conform functionally to the current Device Data Sheet (DS40001923**A**), except for the anomalies described in this document. The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2. The errata described in this document will be addressed in future revisions of the PIC16(L)F19155/56/75/76/85/86 silicon. Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (A1). Data Sheet clarifications and corrections start on page 5, following the discussion of silicon issues. The silicon revision level can be identified using the current version of MPLAB® IDE and Microchip's programmers, debuggers, and emulation tools, which are available at the Microchip corporate website (www.microchip.com). For example, to identify the silicon revision level using MPLAB IDE in conjunction with a hardware debugger: - 1. Using the appropriate interface, connect the device to the hardware debugger. - 2. Open an MPLAB IDE project. - 3. Configure the MPLAB IDE project for the appropriate device and hardware debugger. - 4. Based on the version of MPLAB IDE you are using, do one of the following: - a) For MPLAB IDE 8, select <u>Programmer ></u> Reconnect. - b) For MPLAB X IDE, select <u>Window > Dashboard</u> and click the **Refresh Debug**Tool Status icon (). - Depending on the development tool used, the part number and Device Revision ID value appear in the Output window. **Note:** If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance. The DEVREV values for the various PIC16(L)F19155/56/75/76/85/86 silicon revisions are shown in Table 1. TABLE 1: SILICON DEVREV VALUES | Dant Namehan | Device ID ⁽¹⁾ | Revision ID for Silicon Revision ⁽²⁾ | |--------------|--------------------------|---| | Part Number | Device ID('') | A1 | | PIC16F19155 | 3096h | 2001h | | PIC16LF19155 | 3097h | 2001h | | PIC16F19156 | 3098h | 2001h | | PIC16LF19156 | 3099h | 2001h | | PIC16F19175 | 309Ah | 2001h | | PIC16LF19175 | 309Bh | 2001h | | PIC16F19176 | 309Ch | 2001h | | PIC16LF19176 | 309Dh | 2001h | | PIC16F19185 | 30BAh | 2001h | | PIC16LF19185 | 30BBh | 2001h | | PIC16F19186 | 30BCh | 2001h | | PIC16LF19186 | 30BDh | 2001h | - Note 1: The Device and Revision IDs is located at the respective addresses 8006h and 8005h of configuration memory space. - 2: Refer to the "PIC16(L)F191XX Memory Programming Specification" (DS40001880) for detailed information on Device and Revision IDs for your specific device. TABLE 2: SILICON ISSUE SUMMARY | Module | Feature | Item
Number | Summary | Affected
Revisions | |---|---|----------------|--|-----------------------| | | | Number | | A 1 | | Analog-to-Digital Converter with | ADC ² with Fixed
Voltage Reference
(FVR) | 1.1 | Using the FVR as the ADC positive voltage reference can cause missing codes. | Х | | Computation (ADC ²) | ADC ² with Guard Ring
Outputs | 1.2 | The Guard Ring Output feature is not implemented. | X | | Reset and VBAT | VBAT with ULPBOR | 2.1 | Higher current with ULPBOR active. | Х | | Liquid Crystal Display (LCD) Controller | Internal VLCD3
Measurement | 3.1 | Non stable readings. | Х | | Comparator (CMP) | C2 Low-Power
Clocked Comparator | 4.1 | Unstable output. | Х | | | SMBus VIL Level | 5.1 | The maximum VIL level changes when VDD is below 4.0V. | Х | | Electrical Specifications | Fixed Voltage
Reference (FVR)
Accuracy | 5.2 | Fixed Voltage Reference (FVR) output tolerance may be higher than specified at temperatures below -20°C. | Х | | Electrical Specifications | Nonvolatile Memory
(NVM) for LF Devices | 5.3 | Performing a row erase through the NVMREG access may not execute as expected when VDD is lowered. | Х | | | Min VDD Specification | 5.4 | VDDMIN specifications are changed for LF devices only. | Х | #### Silicon Errata Issues Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (A1). ### 1. Module: Analog-to-Digital Converter with Computation (ADC²) #### 1.1 ADC² with Fixed Voltage Reference (FVR) Using the FVR as the positive voltage reference (VREF+) for the ADC, can cause an increase in missing codes. #### Work around Method 1: Increase the bit conversion time, known as TAD, to 8 μs or higher. Method 2: Use VDD as the positive voltage reference to the ADC. #### Affected Silicon Revisions | A1 | | | | | |-----------|--|--|--|--| | Χ | | | | | #### 1.2 ADC² with Guard Ring Outputs The two guard ring drive outputs ADGRDA and ADGRDB are not implemented on these devices. #### Work around None. #### **Affected Silicon Revisions** | A 1 | | | | | |------------|--|--|--|--| | Х | | | | | #### 2. Module: Reset and VBAT #### 2.1 VBAT with ULPBOR In order to avoid high IBAT currents of 10 μ A or greater, when utilizing VBAT to provide battery back-up the ULPBOR should not be activated. When the part is used in this fashion, VDD should also be either off (0 volts) or >1.5V. #### Work around Do not use VBAT along with ULPBOR. #### **Affected Silicon Revisions** | A1 | | | | | |-----------|--|--|--|--| | Х | | | | | ### 3. Module: Liquid Crystal Display (LCD) Controller #### 3.1 Internal VLCD3 Measurement The ¼ scale tap point provided on the LP Resistor Ladder for use together with the ADC does not provide stable readings to support monitoring of the LCD pump output level. #### Work around Measure the VLCD3 via an external ADC. #### **Affected Silicon Revisions** | A1 | | | | | |----|--|--|--|--| | Χ | | | | | #### 4. Module: Comparator (CMP) #### 4.1 C2 Low-Power Clocked Comparator The output of the Low-Power Clocked Comparator (CMP2) is unstable and is not recommended for use. #### Work around None. #### **Affected Silicon Revisions** | A 1 | | | | | |------------|--|--|--|--| | Χ | | | | | #### 5. Module: Electrical Specifications #### 5.1 SMBus VIL Level When the VDD voltage level supplied to the device is 4.0V and above, the maximum SMBus voltage level for the VIL parameter is 0.8V. When VDD drops below 4.0V, the maximum SMBus voltage level for VIL drops to 0.7V. #### Work around None. #### **Affected Silicon Revisions** | A 1 | | | | | |------------|--|--|--|--| | Χ | | | | | #### 5.2 Fixed Voltage Reference (FVR) Accuracy At temperatures below -20°C, the output voltage for the FVR may be greater than the levels specified in the data sheet. This will apply to all three gain amplifier settings (1X, 2X, 4X). The affected parameter numbers found in the data sheet are: FVR01 (1X gain setting), FVR02 (2X gain setting), and FVR03 (4X gain setting). #### Work around At temperatures above -20°C, the stated tolerances in the data sheet remain in effect. Operate the FVR only at temperatures above -20°C. #### **Affected Silicon Revisions** | A1 | | | | | |----|--|--|--|--| | Χ | | | | | #### 5.3 Nonvolatile Memory (NVM) for LF Devices Performing a row erase through the NVMREG access on LF devices may not execute as expected when VDD is lowered from >3.3V down to <2.0V before or during the row erase, while also operating between +25°C and -40°C. #### Work around None. #### **Affected Silicon Revisions** | A 1 | | | | | |------------|--|--|--|--| | Χ | | | | | #### 5.4 Min VDD Specification VDDMIN specifications are changed for LF devices only. VDDMIN at -40° C to 0° C = 2.3V. VDDMIN at 0° C to 25° C = 2.1V. #### Work around None. #### **Affected Silicon Revisions** | A1 | | | | | |-----------|--|--|--|--| | Χ | | | | | #### **Data Sheet Clarifications** The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS40001923**A**): **Note:** Corrections are shown in **bold**. Where possible, the original bold text formatting has been removed for clarity. ### 1. Module: Analog-to-Digital Converter with Computations (ADC²) Table 19-1 cells should be shaded if they are outside of the recommended TAD parameter range. TAD values that are outside of the recommended range for this device are shaded. The corrected table is as follows: TABLE 19-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES (1,4) | ADC C | lock Period (TAD) | | D | evice Freque | ency (Fosc) | | | |--------------------------|-------------------|-------------------------|-----------------------|-----------------------|------------------------|------------------------|-------------------------| | ADC Clock Source CS<5:0> | | 32 MHz | 20 MHz | 16 MHz | 8 MHz | 4 MHz | 1 MHz | | Fosc/2 | 000000 | 62.5 ns ⁽²⁾ | 100 ns ⁽²⁾ | 125 ns ⁽²⁾ | 250 ns ⁽²⁾ | 500 ns | 2.0 μs | | Fosc/4 | 000001 | 125 ns ⁽²⁾ | 200 ns ⁽²⁾ | 250 ns ⁽²⁾ | 500 ns | 1.0 μs | 4.0 μs | | Fosc/6 | 000010 | 187.5 ns ⁽²⁾ | 300 ns ⁽²⁾ | 375 ns ⁽²⁾ | 750 ns | 1.5 μs | 6.0 μs | | Fosc/8 | 000011 | 250 ns ⁽²⁾ | 400 ns ⁽²⁾ | 500 ns | 1.0 μs | 2.0 μs | 8.0 μs | | | | | | | | | | | Fosc/16 | 000111 | 500 ns | 800 ns | 1.0 μs | 2.0 μs | 4.0 μs | 16.0 μs ⁽³⁾ | | | | | | ••• | ••• | | | | Fosc/128 | 111111 | 4.0 μs | 6.4 μs | 8.0 μs | 16.0 μs ⁽³⁾ | 32.0 μs ⁽²⁾ | 128.0 μs ⁽²⁾ | | FRC | CS(ADCON0<4>) = 1 | 1.0-6.0 μs | **Legend:** Shaded cells are outside of recommended range. Note 1: See TAD parameter for FRC source typical TAD value. - 2: These values violate the required TAD time. - 3: Outside the recommended TAD time. - 4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock Fosc. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep mode. ### 2. Module: Real Time Clock and Calendar (RTCC) A new note is added to section **24.1.2 Write Lock**, with the following text: The RTCEN bit of the RTCCON register is synchronized to the SOSC and will not be set until the external oscillator is available. The first time that the RTCEN bit is set, there could be a delay between when the bit is set in software and when the bit is set in the RTCCON register, if an external crystal is used as the clock source. This potential delay is based upon the start-up time of the crystal, as the RTCEN bit of the RTC-CON register will not set until the external oscillator is stable and ready. The start-up time of the specific external crystal must be considered when initializing the RTCC module to ensure that the RTCC module is enabled before the RTCWREN bit is cleared. It is recommended that the RTCEN bit is polled after setting it to ensure that it is set before clearing the RTCWREN bit. ### APPENDIX A:DOCUMENT REVISION HISTORY #### **Rev A Document (06/2017)** Initial release of this document; issued for revision A1. Includes silicon issues 1.1 (ADC²), 2.1 (VBAT), 3.1 (LCD), 4.1 (CMP), Electrical Specifications: 5.1 SMBus, 5.2 Program Flash Memory, and 5.3 FVR. #### **Rev B Document (11/2017)** Added silicon issue 5.3: Nonvolatile Memory (NVM) for LF devices. #### **Rev C Document (05/2018)** Added silicon issue 5.4: Min VDD Specification for LF devices. Data Sheet Clarifications: Added Module 1: Analog-to-Digital with Computation (ADC 2) and Module 2: Real Time Clock and Calendar (RTCC). #### Note the following details of the code protection feature on Microchip devices: - Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. # QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949= #### **Trademarks** The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2017-2018, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-3023-0 #### Worldwide Sales and Service #### **AMERICAS** Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Ado Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Austin, TX Tel: 512-257-3370 **Boston** Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 **Detroit** Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 Raleigh, NC Tel: 919-844-7510 New York, NY Tel: 631-435-6000 **San Jose, CA** Tel: 408-735-9110 Tel: 408-436-4270 **Canada - Toronto** Tel: 905-695-1980 Fax: 905-695-2078 #### ASIA/PACIFIC Australia - Sydney Tel: 61-2-9868-6733 **China - Beijing** Tel: 86-10-8569-7000 China - Chengdu Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588 **China - Dongguan** Tel: 86-769-8702-9880 **China - Guangzhou** Tel: 86-20-8755-8029 China - Hangzhou Tel: 86-571-8792-8115 China - Hong Kong SAR Tel: 852-2943-5100 China - Nanjing Tel: 86-25-8473-2460 China - Qingdao Tel: 86-532-8502-7355 **China - Shanghai** Tel: 86-21-3326-8000 **China - Shenyang** Tel: 86-24-2334-2829 China - Shenzhen Tel: 86-755-8864-2200 **China - Suzhou** Tel: 86-186-6233-1526 **China - Wuhan** Tel: 86-27-5980-5300 China - Xian Tel: 86-29-8833-7252 **China - Xiamen** Tel: 86-592-2388138 **China - Zhuhai** Tel: 86-756-3210040 #### ASIA/PACIFIC India - Bangalore Tel: 91-80-3090-4444 India - New Delhi Tel: 91-11-4160-8631 India - Pune Tel: 91-20-4121-0141 Japan - Osaka Tel: 81-6-6152-7160 **Japan - Tokyo** Tel: 81-3-6880- 3770 **Korea - Daegu** Tel: 82-53-744-4301 Korea - Seoul Tel: 82-2-554-7200 Malaysia - Kuala Lumpur Tel: 60-3-7651-7906 Malaysia - Penang Tel: 60-4-227-8870 Philippines - Manila Tel: 63-2-634-9065 **Singapore** Tel: 65-6334-8870 **Taiwan - Hsin Chu** Tel: 886-3-577-8366 Taiwan - Kaohsiung Tel: 886-7-213-7830 **Taiwan - Taipei** Tel: 886-2-2508-8600 Thailand - Bangkok Tel: 66-2-694-1351 Vietnam - Ho Chi Minh Tel: 84-28-5448-2100 #### **EUROPE** Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 **Finland - Espoo** Tel: 358-9-4520-820 **France - Paris** Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 **Germany - Garching**Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400 **Germany - Heilbronn** Tel: 49-7131-67-3636 Germany - Karlsruhe Tel: 49-721-625370 **Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 **Germany - Rosenheim** Tel: 49-8031-354-560 Israel - Ra'anana Tel: 972-9-744-7705 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 **Italy - Padova** Tel: 39-049-7625286 **Netherlands - Drunen** Tel: 31-416-690399 Fax: 31-416-690340 Norway - Trondheim Tel: 47-7289-7561 **Poland - Warsaw** Tel: 48-22-3325737 **Romania - Bucharest** Tel: 40-21-407-87-50 **Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **Sweden - Gothenberg** Tel: 46-31-704-60-40 **Sweden - Stockholm** Tel: 46-8-5090-4654 **UK - Wokingham** Tel: 44-118-921-5800 Fax: 44-118-921-5820